## Exercise 2

In each of the Exercises 1 through 3, use residues to find the inverse Laplace transform $f(t)$ corresponding to the given function $F(s)$. Do this in a formal way, without full justification,

$$
F(s)=\frac{2 s-2}{(s+1)\left(s^{2}+2 s+5\right)} .
$$

Ans. $f(t)=e^{-t}(\cos 2 t+\sin 2 t-1)$.

## Solution

Start off by finding the singularities of $F(s)$.

$$
s^{2}+2 s+5=0 \quad \rightarrow \quad s=\frac{-2 \pm \sqrt{4-20}}{2}=\frac{-2 \pm \sqrt{-16}}{2}=\frac{-2 \pm 4 i}{2}=-1 \pm 2 i
$$

Hence, there are three singularities.

$$
s_{1}=-1 \quad s_{2}=-1+2 i \quad s_{3}=-1-2 i
$$

The inverse Laplace transform is given by

$$
f(t)=\sum_{n=1}^{3} \operatorname{Res}_{s=s_{n}}\left[e^{s t} F(s)\right] .
$$

We have

$$
e^{s t} F(s)=\frac{(2 s-2) e^{s t}}{\left(s-s_{1}\right)\left(s-s_{2}\right)\left(s-s_{3}\right)}
$$

Since all the factors in the denominator have multiplicity $1, s_{1}, s_{2}$, and $s_{3}$ are simple poles, so the residues are of the form $\phi_{n}\left(s_{n}\right)$.

Let $\phi_{1}(s)=\frac{(2 s-2) e^{s t}}{\left(s-s_{2}\right)\left(s-s_{3}\right)} . \quad$ Then $\underset{s=s_{1}}{\operatorname{Re}}\left[e^{s t} F(s)\right]=\underset{s=s_{1}}{\operatorname{Re}} \frac{\phi_{1}(s)}{s-s_{1}}=\phi_{1}\left(s_{1}\right)=-e^{-t}$.
Let $\phi_{2}(s)=\frac{(2 s-2) e^{s t}}{\left(s-s_{1}\right)\left(s-s_{3}\right)} . \quad$ Then $\operatorname{Res}_{s=s_{2}}\left[e^{s t} F(s)\right]=\operatorname{Res}_{s=s_{2}} \frac{\phi_{2}(s)}{s-s_{2}}=\phi_{2}\left(s_{2}\right)=\frac{1}{2}(1-i) e^{(-1+2 i) t}$.
Let $\phi_{3}(s)=\frac{(2 s-2) e^{s t}}{\left(s-s_{1}\right)\left(s-s_{2}\right)} . \quad$ Then $\operatorname{Res}_{s=s_{3}}\left[e^{s t} F(s)\right]=\operatorname{Res}_{s=s_{3}} \frac{\phi_{3}(s)}{s-s_{3}}=\phi_{3}\left(s_{3}\right)=\frac{1}{2}(1+i) e^{(-1-2 i) t}$.
Summing the residues we obtain $f(t)$, the inverse Laplace transform of $F(s)$.

$$
\begin{aligned}
f(t)=\sum_{n=1}^{3} \operatorname{Res}_{s=s_{n}}\left[e^{s t} F(s)\right] & =-e^{-t}+\frac{1}{2}(1-i) e^{(-1+2 i) t}+\frac{1}{2}(1+i) e^{(-1-2 i) t} \\
& =e^{-t}\left(-1+\frac{e^{2 i t}+e^{-2 i t}}{2}+\frac{e^{2 i t}-e^{-2 i t}}{2 i}\right)
\end{aligned}
$$

Therefore,

$$
f(t)=e^{-t}(-1+\cos 2 t+\sin 2 t) .
$$

